To get moles. divide mass by molar mass.Molar mass of
Na is 23
and for Cl is 35.5.
the total molar mass of NaCl is 23+35.5 = 58.5mol/gUse the mass and divide by this number30.22g divide by 58.5mol/g and you will get 0.5166 mole.
Since the molecule has 1 Na to 1 Cl, and that the number of moles for NaCL is 0.5166. All of them would be 0.5166molesNa = 0.5166 x 1 = 0.5166molesCl = 0.5166 x 1 = 0.5166moles
to get number of atoms. Multiply your mole by Avogadro number which is 6.022x10^23Na = 0.5166 x 6.022E23 = 3.111x10^23Cl = 0.5166 x 6.022E23 = 3.111x10^23
During a phase change the temperature does not change since all of the heat is being absorbed in order to break the intermolecular forces. Due to that, the formula will not need to have T in it and is actually q=nΔH(v).
n=the number of moles (in this case 2.778mol of water since you divide 50g by 18g/mol).
ΔH(v)=the molar heat of vaporization (in this case 40.7kJ/mol).
q=the heat that must be absorbed
q=2.778mol×40.7kJ/mol
q=113.1kJ
Therefore the water needs to absorb 1.13×10²kJ.
I hope this helps. Let me know if anything is unclear.
Answer:
Their average kinetic energy increases
Explanation:
The average kinetic energy of the rice molecules increases as the pot is left on the cooking stove.
Heat is transferred to the pot by conduction from the heat source. The heat is then transferred to the rice in the cooking pot by convection.
- As the water in the pot heats up.
- The rice gains thermal energy.
- This causes the molecules of the rice particles to start vibrating.
- As the molecules vibrate about their fixed position, their thermal energy continues to increase.
- Therefore, the amount of heat absorbed by the rice increases with time and this actually cooks the food.
2 NH3+ 2 O2 —> 2 NO+ 3 H2O
You run approximately 16404 feet.