Answer:
Environment: They must be supplied and used in ways that have minimal safety and environmental stewardship have advanced safety regulations and practices, promulgated rules for reducing VOC emissions from oil and gas production and ... disposal protocols are similarly reducing negative impacts to air and water.
Explanation:
His measurements are precise since his pH values are close to each other in a way that it was repeated in all measurements. On the contrary to accuracy, it is the closeness to the actual pH value he should have achieved. Therefore, Jose's results are precise but not accurate since his value is not close to the actual value of pH 4.
As per as the Multiplication rules of the significant figures, whenever any numbers in the decimals forms are multiplied or divided then result in mentioned in such a way so that the significant figures after the decimal will be same as that in the given least condition.
_______________________________
102900/12 = 8575
170 × 1.27 = 215.9
∴ (102,900 ÷ 12) + (170 × 1.27) = 8575 + 215.9
= 8790.9
Now, As per as Above rules, answer in correct significant figures will be = 8791.
Answer:
The value of
for this reaction at 1200 K is 4.066.
Explanation:
Partial pressure of water vapor at equilibrium = 
Partial pressure of hydrogen gas at equilibrium = 
Total pressure of the system at equilibrium P = 36.3 Torr
Applying Dalton's law of partial pressure to determine the partial pressure of hydrogen gas at equilibrium:



The expression of
is given by:


The value of
for this reaction at 1200 K is 4.066.
First figure out how many grams must freeze and then convert the grams to moles.
<span>Hf = -334 J/g. Convert this to KJ/g by dividing by 1000. (There are 1000 Joules in a kJ). </span>
<span>Hf = -334 J/g ÷ 1000 J/kj = -0.334 kJ/g </span>
<span>Now, divide 100 kJ by -0.334 kJ/g (see how the units are lining up?) </span>
<span>100 kJ ÷ -0.334 kJ/g = 299 g </span>
<span>Now convert this to moles by dividing by the molecular weight of water (18.0g/mole). </span>
<span>299 ÷ 18.0 = 16.6 moles </span>