Answer:
6.5 moles of Oxygen are required
Explanation:
Based on the reaction:
CH3OH + 1/2 O2 → CH2O + H2O
1 mole of methanol reacts with 1/2 moles O2 to produce 1 mole of formaldehyde and 1 mole of water.
Thus, to produe 13 moles of formaldehyde, CH2O, are needed:
13 moles CH2O * (1/2mol O2 / 1mol CH2O) =
<h3>6.5 moles of Oxygen are required</h3>
<span>Not to be confused with tetration.
This article is about volumetric titration. For other uses, see Titration (disambiguation).
Acid–base titration is a quantitative analysis of concentration of an unknown acid or base solution.
Titration, also known as titrimetry,[1] is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte. Since volume measurements play a key role in titration, it is also known as volumetric analysis. A reagent, called the titrant or titrator[2] is prepared as a standard solution. A known concentration and volume of titrant reacts with a solution of analyte or titrand[3] to determine concentration. The volume of titrant reacted is called titration volume</span>
Because they can't get trapped in.
To solve this, we simply equate the change in enthalpy for
the two substances since heat gained by water is equal to heat lost of aluminum.
We know that the heat capacity of aluminum is 0.089 J/g°C and that of water is
4.184 J/g°C. Therefore:
450.2 (95.2 - T) (0.089) = 60 (T – 10) (4.184)
3,814.45456 – 40.0678 T = 251.04 T – 2,510.4
291.1078 T = 6,324.85456
<span>T = 21.7°C</span>
These changes are impairing the ocean's capacity to provide food, protect livelihoods, maintain clean water, and recover from environmental stresses like severe storms.