Answer:
The heat of vaporisation of methanol is "3.48 KJ/Mol"
Explanation:
The amount of heat energy required to convert or transform 1 gram of liquid to vapour is called heat of vaporisation
When 8.7 KJ of heat energy is required to vaporize 2.5 mol of liquid methanol.
Hence, for 1 mol of liquid methanol, amount of heat energy required to evaporate the methanol is = 
= 3.48 KJ
So, the heat of vaporization 
Therefore, the heat of vaporization of methanol is 3.48KJ/Mol
The correct option is this: EFFUSION BECAUSE THERE IS A MOVEMENT OF A GAS THROUGH A SMALL OPENING INTO A LARGER VOLUME.
Effusion refers to the movement of gas particles through a small hole. According to Graham's law, the effusion rate of a gas is inversely proportional to the square root of the mass of its particles.
Answer:
1 (348) (D2) = 273 (2.05) (0.805) D2= 1.29 g/L
Explanation:
Moles of phosphoric acid would be needed : 0.833
<h3>Further explanation</h3>
Given
15 grams of water
Required
moles of phosphoric acid
Solution
Reaction(decomposition) :
H3PO4 -> H2O + HPO3
mol water (H2O :
= mass : MW
= 15 g : 18 g/mol
= 0.833
From the equation, mol ratio H3PO4 = mol H2O = 1 : 1, so mol H3PO4 = 0.833
I believe the most appropriate answer would be to change the core from wood to iron. This is because iron is a magnetic material while wood is not magnetic hence cant acquire magnetism. Other factors that would increase the strength of electromagnet would be; increasing the amount of electric current, and increasing the number of windings.