Answer:
P1 =4 atm
T1= 20°C
P2=1 atm
T2=?
According to Gay-Lussac's Law or Third Gas Law,
P1T2=P2T1
4×T2=1×20
T2= 20/4
T2= 5°C
Answer At 5°C temperature does a gas at 1.00 atm !
Explanation:
1)  + 7 H_2(g)](https://tex.z-dn.net/?f=%202%20Al%28s%29%20%2B%202%20NaOH%28aq%29%20%2B%206%20H_2O%28l%29%20%5Clongleftrightarrow%202%20Na%5BAl%28OH%29_4%5D%28aq%29%20%2B%207%20H_2%28g%29)
![Kc=\frac{[Na[Al(OH)_4]]^2*[H_2]^7}{[NaOH]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BNa%5BAl%28OH%29_4%5D%5D%5E2%2A%5BH_2%5D%5E7%7D%7B%5BNaOH%5D%5E2%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

2) 
![Kc=\frac{[H_2SO_4]}{[SO_3]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2SO_4%5D%7D%7B%5BSO_3%5D%5E2%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

3)
![Kc=\frac{1}{[O_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B1%7D%7B%5BO_2%5D%5E3%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

solution:
the change in the boiling point is given as,
dTbp =2.30°c
elevation constant for the solvent is given by,
kb=0.512°c/m

= 4.49m
Answer:
D. C > B >A
Hope it helps!
Explanation:
From strongest to weakest, the intermolecular forces rank in the following way:
Strongest: Hydrogen bonding. This occurs when compounds contain #"O"-"H"# , #"N"-"H"# , or #"F"-"H"# bonds. ...
Less strong: Dipole-dipole forces. ...
Weakest: London Dispersion Forces.
You're going to divide the mass of chlorine within the compound by the mass of the compound, and then multiply the result by 100 to get the answer