1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antiseptic1488 [7]
3 years ago
7

A tennis ball is tossed upward with a speed of 3.0\,\dfrac{\text m}{\text s}3.0 s m ​ 3, point, 0, start fraction, start text, m

, end text, divided by, start text, s, end text, end fraction. We can ignore air resistance. What is the velocity of the ball 0.40\,\text s0.40s0, point, 40, start text, s, end text after the toss?
Physics
2 answers:
MrRa [10]3 years ago
8 0

Answer:

The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).

Explanation:

Hi there!

The equation for the velocity of an object thrown upward is the following:

v = v0 + g · t

Where:

v = velocity of the ball.

v0 = initial velocity.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

t = time.

To find the velocity of the ball at t = 0.40 s, we have to replace "t" by 0.40 s in the equation:

v = v0 + g · t

v = 3.0 m/s - 9.8 m/s² · 0.40 s

v = -0.92 m/s

The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).

tangare [24]3 years ago
4 0

Answer:

-0.92

Explanation:

You might be interested in
You are given aqueous solutions of six different substances and asked to determine whether they are strong, weak, or nonelectrol
kogti [31]

Answer:

Answer is explained below;

Explanation:

Electrolytes are any substances that dissociate into charged particles called ions when dissolved in water. The positively charged ions called cations and the negatively charged ions called anions move toward the negative and positive terminals (cathode and anode) of an electric circuit.

When a substance dissolved in water completely dissociates into ions, it is called a strong electrolyte. The aqueous solutions containing strong electrolytes conduct electricity very well and the examples include strong acids and soluble ionic compounds such as barium chloride, sodium hydroxide, etc.  

When a substance dissolved in water does not completely dissociate into ions, it is called a weak electrolyte. Since the aqueous solutions containing weak electrolytes have relatively few ions, their electrical conductivity is very low compared to the solutions containing strong electrolytes. Examples of weak electrolytes include weak acids and bases like acetic acid, ammonia, etc.

When a substance does not dissociate into ions when dissolved in water, it is called a nonelectrolyte. Since the aqueous solutions containing nonelectrolytes do not contain any ions, such solutions do not conduct electricity. Examples of nonelectrolytes are ethanol, aldehydes, glucose, ketones, etc.

If a solution contains dissolved ions, it conducts electricity and as the ion concentration increases, the conductivity also increases. To determine whether the aqueous solutions of six different substances are strong, weak, or nonelectrolytes, we can test them by applying a voltage to electrodes immersed in the solutions and a light bulb. By observing the brightness of the light bulb or by measuring the flow of electrical current, we can find out which solution contains a strong electrolyte or weak electrolyte, or nonelectrolyte.

If the solution contains a nonelectrolyte, the current flow is nil and the light bulb does not glow. If the solution contains a strong electrolyte, the current flow is very strong and so the brightness of the light bulb is very high. If the solution contains a weak electrolyte, the current flow is much low compared to the strong electrolyte and the light bulb glows, but the brightness is very low.

3 0
3 years ago
An Olympic track runner starts from rest and has an acceleration of 2.4 m/s2 for 3.6 s, then has zero acceleration for the remai
rjkz [21]

Answer:

The runner's speed at the following times would remain 8.64 m/s.

Explanation:

Acceleration definition: Acceleration is rate of change in velocity of an object with respect to time.

In this case, after 3.6 seconds the acceleration is zero, it means that the velocity of the runner after 3.6 seconds is not changing and it will remain constant for the remainder of the race. Now, we have to find the velocity of the runner that he had after 3.6 seconds and that would be the runner's speed for the remainder of the race. For this we use first equation of motion.

First equation of motion:        Vf = Vi + a×t

Vf stands for final velocity

Vi stands for initial velocity

a stands for acceleration

t stands for time

In the question, it is mentioned that the runner starts from rest so its initial velocity (Vi) will be 0 m/s.

The acceleration (a) is given as 2.4 m/s²

The time (t) is given as 3.6 s

Now put the values of Vi, a and t in first equation of motion

                       Vf = Vi + a×t

                       Vf = 0 + 2.4×3.6

                       Vf = 2.4×3.6

                       Vf = 8.64 m/s

So,the runner's speed at the following times would remain 8.64 m/s.

5 0
2 years ago
A person travelled 350 m east from his home and returns back home an hour has displacement of_?​
Svetradugi [14.3K]

Answer:

vector of zero magnitude

Explanation:

The displacement is a vector magnitude, therefore, in addition to being a module, it has direction and sense.

In this case it moved 350 m and then returned the same 350 m, so the total displacement is zero.

If we draw the vector, one has a directional direction to the right and the other direction to the left, therefore when adding the two vectors gives a vector of zero magnitude

7 0
2 years ago
Question 5. Our results support the idea that if left to freely oscillate, a system will vibrate at a natural frequency that dep
Gekata [30.6K]

Answer:

(b) In ideal condition we neglect mass of spring but in real springs mass of spring adds another factor to its time period.

since we are adding a factor of mass to the system, and frequency being inversely proportional to squared root of mass, we can come to a general conclusion that it effectively reduces the natural frequency .

Explanation:

kindly check the attachment for explanation.

3 0
3 years ago
(ii) Describe how the acceleration of the train at time t = 100 s differs from the acceleration
quester [9]

Explanation:

Acceleration is the rate of change of velocity with time. When acceleration increases a body moves a faster velocity.

  • In the graph acceleration at time t= 100s is rapidly increasing.
  • At t = 20s, the acceleration of the body is getting started up.

A vehicle at time 100s will have a faster velocity compared to one at t = 20s

7 0
3 years ago
Other questions:
  • Vectors a and b have scalar product â6.00, and their vector product has magnitude +9.00. what is the angle between these two vec
    5·1 answer
  • Which of the following is part of a atom
    9·2 answers
  • What is the most effective means of establishing awareness of hazards in commercial, industrial, and storage facilities with lar
    9·1 answer
  • Two identical hard spheres, each of mass m and radius r, are released from rest in otherwise empty space with their centers sepa
    8·1 answer
  • The earliest radio broadcasts on Earth were emitted about 100 years ago. Approximately where are these initial radio waves now?
    15·1 answer
  • Disadvantages of friction
    12·1 answer
  • A 500 pF capacitor is charged up so that it has 10μC of charge on its plates. The capacitor is then quicklyconnected to a 10 H i
    9·1 answer
  • Two objects (42.0 and 21.0 kg) are connected by a massless string that passes over a massless, frictionless pulley. The pulley h
    7·1 answer
  • Explain why increasing the mass of a car affects how the car rolls down a ramp.
    7·2 answers
  • Identify the medium for ocean waves
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!