Answer:
Drawing the triangle:
H / x = tan 52.2 = 1.29
H / (4.6 - x) = tan 28.8 = .550
H = 1.29 x
H = .55 * 4.6 - .55 x
1.84 x = 2.53 combining equations
x = 1.38
4.6 - 1.38 = 3.22
Total base of triangle = 1.38 + 3.22 = 4.6
H / x = tan 52,2 = 1.29
H = 1.29 * 1.38 = 1.78 height of triangle
Check:
1.78 / 3.22 = tan 28.9
This agrees with the given value of 28.8
Answer:
The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate
Explanation:
This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error
Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s