Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
Answer:
You could try finding a familiar peer to join the activity with your child. Or ask your child who their friends are at school, or what they look for in a friend at school.
Answer:
option D
Explanation:
given,
A conductor is carrying current = 2.0 A is 0.5 mm thick
Hall voltage = 4.5 x 10-6 V
uniform magnetic field = 1.2 T
density of the charge = n =?
hall voltage =


n = 6.67 × 10²⁷ charges/m
hence the correct answer is option D
Answer:
A. it's the only answer that makes sense. if I'm wrong sorry