i know but yes i need to know it
To solve this we are going to use the future value of annuity ordinary formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

Since the deposit is made semiannually, it is made 2 times per year, so

.
Since the type of the annuity is ordinary, payments are made at the end of each period, and we know that we have 2 periods, so

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=6200[ \frac{(1+ \frac{0.06}{2} )^{(2)(5)} -1}{ \frac{0.06}{2} } ]](https://tex.z-dn.net/?f=FV%3D6200%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.06%7D%7B2%7D%20%29%5E%7B%282%29%285%29%7D%20-1%7D%7B%20%5Cfrac%7B0.06%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$71,076.06</span>
The answer is 8m im serious
Answer:
a) ![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) f(t=2015) = 264,034,317.7
Step-by-step explanation:
The rate of change in the number of hospital outpatient visits, in millions, is given by:

a) To find the function f(t) you integrate f(t):
![\int \frac{df(t)}{dt}dt=f(t)=\int [0.001155t(t-1980)^{0.5}]dt](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdf%28t%29%7D%7Bdt%7Ddt%3Df%28t%29%3D%5Cint%20%5B0.001155t%28t-1980%29%5E%7B0.5%7D%5Ddt)
To solve the integral you use:

Next, you replace in the integral:

Then, the function f(t) is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+C'](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2BC%27)
The value of C' is deduced by the information of the exercise. For t=0 there were 264,034,000 outpatient visits.
Hence C' = 264,034,000
The function is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) For t = 2015 you have:
![f(t=2015)=0.001155[\frac{2}{3}(2015)(2015-1980)^{1/2}-\frac{4}{15}(2015-1980)^{5/2}]+264,034,000\\\\f(t=2015)=264,034,317.7](https://tex.z-dn.net/?f=f%28t%3D2015%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7D%282015%29%282015-1980%29%5E%7B1%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%282015-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000%5C%5C%5C%5Cf%28t%3D2015%29%3D264%2C034%2C317.7)