There should be a sufficient amount of the selected isotope in the rock.
The half-life of the isotope must be long enough to capture the age of the rock.
Explanation:
Sully must consider two main aspect before selecting her choice isotope for dating.
There must be sufficient amount of the selected isotope in the rock.
The half - life of the isotope must be long enough to capture the age of the rock.
- Radiometric dating gives a rock an absolute numerical age.
- The half-life of an isotope is time take for half of a radioactive element to decay.
- If the half-life of an isotope is very short, all the parent nuclide would have turned to daughter nuclides.
- Also, we must have sufficient amount of both the daughter and parent isotope in the selected rock.
learn more:
Radiometric dating brainly.com/question/7022607
#learnwithBrainly
Answer:
C. Occurs where a plate is moving down.
Explanation:
Ocean trenches are steep depressions in the deepest parts of the ocean where old ocean crust from one tectonic plate is pushed beneath another plate, raising mountains, causing earthquakes, and forming volcanoes on the seafloor and on land.
Please mark as Brainliest! :)
Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g