Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M
Answer:
v = 450 m/s
Explanation:
Given data:
Frequency = 75 Hz
Wavelength = 6 m
Velocity = ?
Solution:
Velocity is the product of frequency and wavelength.
v = f × λ
v = 75 Hz × 6 m
Hz = s⁻¹
v = 75 s⁻¹ × 6 m
v = 450 m/s
Write a balance equation for the reaction between the analyte and the titrant.
Calculate the # of moles of titrant using the volume of titrant required and the concentration of titrant.
Calculate the # of moles of analyte using the stoichiometric coefficients of the equation.
Calculate the concentration of the analyte using the number or moles of analyte and the volume of analyte titrated.
Answer:
The temperature of the boiler is approximately 147.1 °C
Explanation:
A Carnot engine is an ideal engine that has the highest efficiency among all the engines because the second law of thermodynamics.That efficiency
is:

with
the temperature of the hot reservoir (the boiler temperature) and
the temperature of the cold reservoir (the steam temperature). Solving for
:

Yes. density is a physical property that can be used to identify matter