Concentration of the reactant,pressure,surface
area of the reactant and temperatur
Dilution of the solution can be calculated by the formula of the molarity and volume. The initial volume of 2.50 M solution was 30 mL.
<h3>What is the relationship between molar concentration and dilution?</h3>
Molar concentration or the dilution factor is in an inverse relationship and with an increase in the dilution, the molarity of the solution decreases.
Given,
Initial molarity = 2.50 M
initial volume = ?
Final molarity = 0.750 M
Final volume = 100.0 ml
Substituting values in the formula:

Therefore, 30 mL was the initial volume of the solution before it was diluted.
Learn more about dilution here:
brainly.com/question/26896011
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Answer:
1.63 × 10²⁴ atoms.
Explanation:
To calculate the number of atoms (N) contained in 2.7moles of carbon, we multiply the number of moles (n) by Avogadro's number (6.02 × 10²³).
That is, N = n × nA
Where;
N = number of atoms
n = number of moles (mol)
nA = Avogadro's numbe
N = 2.7 × 6.02 × 10²³
N = 16.254 × 10²³
N = 1.63 × 10²⁴ atoms.
Hence, there are 1.63 × 10²⁴ atoms in 2.7moles of Carbon.
C) medium.
The medium of a wave is any substance that carries the wave, or through which the wave travels.Ocean waves are carried by water, sound waves are carried by air, and. the seismic waves of an earthquake are carried by rock and soil.