Answer:
175s
Explanation:
time it takes sunlight to reach the earth in vacuum
C=light speed=299792458m/s
X=1.5x10^8km=1.5x10^11m
c=X/t
T1=X/c
T1=1.5X10^11/299792458=500.34s
time it takes sunlight to reach the earth in water:
First we calculate the speed of light in water taking into account the refractive index
Cw=299792458m/s/1.349=222233104.5m/s
T2=1.5x10^11/222233104.5m/s=675s
additional time it would take for the light to reach the earth
ΔT=T2-T1=675-500=175s
Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
The football and air resistance between contact
m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
To calculate force, use the formula force equals mass times acceleration, or F = m × a. Make sure that the mass measurement you're using is in kilograms and the acceleration is in meters over seconds squared. When you've solved the equation, the force will be measured in Newtons.