The kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Given parameters
To find
Kinematics is the part of physics that establishes the relationships between the position, velocity, and acceleration of bodies.
In this case we have a vertical launch
y = y₀ + v₀ t - ½ g t²
Where y and y₀ are the final and initial positions, respectively, v₀ the initial velocity, g the acceleration of gravity (g = 9.8 m / s²) and t the time
With the ball in hand, its position is zero
0 = 0 + v₀ t - ½ g t²
v₀ t - ½ g t² = 0
v₀ = ½ g t
Let's calculate
v₀ = ½ 9.8 2.4
v₀ = 11.76 m / s
In conclusion using kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Learn more about vertical launch kinematics here:
brainly.com/question/15068914
Answer:
A car accelerates from rest, and travels 400 m in 3.5 seconds. If
the net force on the car is 12,000 N what is the mass of the car? bzgs dvd d dv dvdvd dhd dbvd
Explanation:
shd dhd bdvd dhdbduhdbdhdbbdceudd f
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.
2 Ways Acceleration can be changed are:
i) Increasing or decreasing the velocity of a moving object.
ii) Change of direction of the moving object.