Answer: (3) f(8) = g(8)
<u>Step-by-step explanation:</u>
Let's compare the values of f(x) and g(x) when x = 0, 2, 8, and 4
<u>      f(x)       </u>                      <u>      g(x)        </u>            <u>Comparison</u>
f(x) = 2x - 3                     
f(0) = 2(0) - 3                     
       = -3                                   = 1                     f(0) < g(0)
f(2) = 2(2) - 3                     
      = 1                                      = 4                     f(2) < g(2)
f(8) = 2(8) - 3                     
      = 13                                   = 13                     f(8) = g(8)
f(4) = 2(4) - 3                     
       = 5                                   = 7                       f(4) < g(4)
The only statement provided that is true is f(8) = g(8)
 
        
             
        
        
        
Answer:
r = 8
Step-by-step explanation:
V = π r^2 h so 383 = r^2 (6)
383 / 6 = r^2 
64 = r^2 so 
r = 8
 
        
             
        
        
        
-1<span> ≤  r/3                          
-1 </span><span> ≤ (r</span><span>÷3)
(r</span>÷3) <span>≥ -1
r/3 </span><span>≥ -1 </span>
        
             
        
        
        
Answer:
The other two vertices are (4 , -2) and (4 , 2) 
 
        
                    
             
        
        
        
For cos(2x) * (2cos(x) + 1) = 0, use the double angle identity for cos(2x), which is cos^2 x - sin^2 x = cos^2 x - (1-cos^2) = 2cos^2 x - 1.
So we have (2cos^2 x - 1)(2cos x + 1) = 0. So 2cos^2 x -1 = 0 or x = 0 and 2pi.
For 2sec^2 x + tan^2 x - 3 = 0, use the identity sec^2 x = tan^2 x + 1, so we have
2(tan^2 x + 1) + tan^2 x - 3 = 0 or
<span>2tan^2 x + tan^2 x - 1 = 0 or
</span>3 tan^2 x = 1.
So x = pi/2, pi/2 + pi = 3pi/2.