Answer:
the environment and parasites
Answer:
Triglycerides, cholesterol and other essential fatty acids.
Explanation:
the scientific term for fats the body can't make on its own—store energy, insulate us and protect our vital organs. They act as messengers, helping proteins do their jobs.
By predicting how the sodium-potassium pump becomes integrated into outer cell membrane. The prediction that is false is the mRNA coding into sodium pump is translated into the pump on two ribosomes.
<h3>What is sodium-potassium pump?</h3>
The sodium-potassium pump is an enzyme (an electrogenic transmembrane ATPase) present in the membrane of all animal cells. It is also known as sodium-potassium adenosine triphosphatase, Na+/K+-ATPase, or sodium-potassium ATPase. It serves a number of purposes in cell physiology.
The enzyme Na+/K+-ATPase is activated (i.e. it uses energy from ATP). Three sodium ions are exported and two potassium ions are imported for each ATP molecule used by the pump. As a result, each pump cycle results in the net export of one positive charge.
There are four distinct sodium pump isoforms or subtypes in mammals. Each has distinct qualities and patterns of tissue expression. The P-type ATPase family includes this enzyme.
To know more about enzyme visit: brainly.com/question/14953274
#SPJ4
Ileocecal sphincter tone decreases after distention of colon. This sphincter separates ileum and cecum and is under the control of vagus nerve.
Answer:
Oxygen molecules in the tissues of the lung diffuse into the blood because the concentration of oxygen in the lung's tissues is more than the concentration of oxygen in the blood.
Explanation:
Diffusion is the movement of molecules from the region of higher concentration of the molecule to the region of lower concentration of the same molecule. Molecules in diffusion move <em>downward the concentration</em> <em>gradient</em> created by difference in concentration between two regions until an <em>equilibrium (equal concentration in the two regions)</em> is established.
Oxygen molecules diffuse into the tissues of the lung when an organism breathes-in during the process of breathing. The molecules in the now oxygen-rich tissues eventually start diffusing into the blood in the lung because the blood passing through the lung is always de-oxygenated or has lower oxygen concentration compared to the tissues of the lung.
Oxygenated blood moves into the heart, pumps round the body by the heart, gets depleted of oxygen and eventually find its way back to the lung where the process is repeated.
Diffusion of oxygen from the tissues of the lung into the blood will keep happening as long as oxygen keeps getting dissolved into the lung's tissues and an equilibrium is yet to be established between the tissues and the blood.