Answer: The answer is "C"
Explanation:
The electromagnetic waves are arranged in the increasing wavelength and energy by the following order;
Radio waves has the lowest energy and wavelength but of the highest frequency.
The Infra-red rays follows the visible light follows, the ultraviolet ray follows, the X-ray follows and then the Gamma-ray has the highest energy and wavelength but the lowest frequency.
Therefore the answer is C, radio, infra, visible, ultraviolet, x-ray, gamma.
Answer:
The work required to move this charge is 0.657 J
Explanation:
Given;
magnitude of charge, q = 4.4 x 10⁻⁶ C
Electric field strength, E = 3.9 x 10⁵ N/C
distance moved by the charge, d = 50 cm = 0.5m
angle of the path, θ = 40°
Work done is given as;
W = Fd
W = FdCosθ
where;
F is the force on the charge;
According the coulomb's law;
F = Eq
F = 3.9 x 10⁵ x 4.4 x 10⁻⁶ = 1.716 N
W = FdCosθ
W = 1.716 x 0.5 x Cos40
W = 0.657 J
Therefore, the work required to move this charge is 0.657 J
because positive and negative attract
Explanation:
By the second law of Newton we get the relation
F = ma
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds