Answer:
25150
Step-by-step explanation:
First, we have to see that this is an arithmetic sequence... since to get the next element we add 5 to it. (a geometric sequence would be a multiplication, not an addition)
So, we have a, the first term (a = 4), and we have the difference between each term (d = 5), and we want to find the SUM of the first 100 terms.
To do this without spending hours writing them down, we can use this formula:

If we plug in our values, we have:

S = 50 * (8 + 495) = 50 * 503 = 25150
Answer:
(f o g) (x) = 36x² + 3
(g o f) (x) = 6x² + 18
Step-by-step explanation:
f(x) is x² + 3
g(x) is 6x
(f o g) (x) means for all xs in f replace it with g(x) or 6x
(f o g) (x) = (6x)² + 3 - see 6x is in place of x and 6x is g(x)
(f o g) (x) = 36x² + 3
(g o f) (x) = 6(x² + 3)
(g o f) (x) = 6x² + 18
Answer:
If one −5s−7(8s−1): -61s+7
If two −5s−7(8s−1): -112s+14
Step-by-step explanation:
-5s-7(8s-1)
Multiply -7 onto 8s and -1:
-5s-56s+7
add -5s and -56s:
-61s+7
−5s−7(8s−1)−5s−7(8s−1)
Multiply both -7 to 8s and -1
-5s-56s+7-5s-56s+7
add:
-112s+14
You need two terms that multiply to (12x-4). The term on the outside needs to be a common multiple of 12 and 4. The common factors are 1, 2, and 4. Here are the following possible dimensions:
1(12x-4)
2(6x-2)
4(3x-1)
Hope this helps.
Answer:
The option is C i.e 115°, 65°. proof is given below.
Step-by-step explanation:
Given:
ABCD is a quadrilateral.
m∠ A = 100 + 5x
m∠ B = 77 - 4y
m∠ C = 106 + 3x
m∠ D = 47 + 6y
To Prove:
ABCD is a parallelogram if opposing angles are congruent by finding the measures of angles.
m∠ A = m∠ C and
m∠ B = m∠ D
Proof:
ABCD is a quadrilateral and is a parallelogram if opposing angles are congruent.
∴ m∠ A = m∠ C
On substituting the given values we get
∴ 100 + 5x = 106 +3x
∴ 
m∠ A = 100 + 5x = 100 + 5 × 3 =100 + 15 = 115°
m∠ C = 106 + 3x = 106 + 3 ×3 =106 + 9 = 115°
∴ m∠ A = m∠ C = 115°
Similarly,
∴ m∠ B = m∠ D
77 - 4y = 47 + 6y
10y = 77 - 47
10y =30
∴
m∠ B = 77 - 4y =77 - 4 × 3 = 77 - 12 = 65°
m∠ D = 47 + 6y = 47 + 6 × 3 = 47 + 18 = 65°
∴ m∠ B = m∠ D = 65°
Therefore the option is C i.e 115°, 65°