Answer:
The horse father from the center has a greater tangential speed. Although both horses complete one circle in the same time period, the one farther from the center covers a greater distance during that same period.
Explanation:
Answer:
0.187 m
Explanation:
We'll begin by calculating the acceleration of the ball. This can be obtained as follow:
Mass (m) = 0.450 Kg
Force (F) = 38 N
Acceleration (a) =?
F = m × a
38 = 0.450 × a
Divide both side by 0.450
a = 38 / 0.450
a = 84.44 m/s²
Finally, we shall determine the distance. This can be obtained as follow:
Initial velocity (u) = 2.20 m/s.
Final velocity (v) = 6 m/s
Acceleration (a) = 84.44 m/s²
Distance (s) =?
v² = u² + 2as
6² = 2.2² + (2 × 84.44 × s)
36 = 4.4 + 168.88s
Collect like terms
36 – 4.84 = 168.88s
31.52 = 168.88s
Divide both side by 168.88
s = 31.52 / 168.88
s = 0.187 m
Thus, the distance is 0.187 m
Answer:
the pressure will decrease by 1/2
Explanation:
PV=nRT
P=(nRT)/(V)
nRT are all constant so they will equal 1
V is 2
P=1/2
Answer:
n=2.053
Explanation:
We will use Snell's Law defined as:

Where n values are indexes of refraction and
values are the angles in each medium. For vacuum, the index of refraction in n=1. With this we have enough information to state:

Solving for
yields:

Remember to use degrees for trigonometric functions instead of radians!
the relatively thick part of the earth's crust that forms the large landmasses. It is generally older and more complex than the oceanic crust.