Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
Density is defined as [mass] / [volume] .
The only choice listed with those physical dimensions is 'd' .
Gravitational force = G · (mass₁) · (mass₂) / (distance)
(distance²) = G · (mass₁) · (mass₂) / (Gravitational force)
G = 6.67 x 10⁻¹¹ n-m² / kg² (the "gravitational constant")
Distance² = (6.67 x 10⁻¹¹ n-m² / kg²) (28,500 kg) (2.2 x 10⁸ kg) / (39 N)
Distance² = (6.67 · 28,500 · 2.2 x 10⁻³ N-m²) / (39N)
Distance² = (418.209 N-m²) / (39N)
Distance² = 10.72 m²
<em>Distance = 3.275 meters</em>
An absurd scenario, but that's by golly what the math says with the numbers provided. I guess it's a teeny tiny planet orbiting 3.275 meters outside a teeny tiny black hole.
Answer:
Option B
Explanation:
The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence
Phase difference= 2.9-2.3= 0.6
Answer:
what is this I don't understand the question