Answer:
233.1 miles per hours
Explanation:
Speed: This is defined as the ratio of distance to time. The S.I unit of speed is m/s. speed is a vector quantity because it can only be represented by magnitude only. Mathematically, speed can be expressed as,
S = d/t ....................... Equation 1
Where S = speed of the runner, d = distance covered, t = time.
Given: d = 100 meter , t = 9.580 seconds
Conversion:
If, 1 meter = 0.00062 miles
Then, 100 meters = (0.00062×100) miles = 0.62 miles.
Also
If, 3600 s = 1 h
Then, 9.580 s = (1×9.580)/3600 = 0.00266 hours.
Substitute into equation 1
S = 0.62/0.00266
S = 233.1 miles per hours.
Hence the runner speed is 233.1 miles per hours
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):
<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?
</span>The answer will typically be given in joules:
1J=kg∗m2s2 Could be wrong... But I believe it is 5.3...? as a final product.
Average speed = total distance travelled ÷ total time taken
AS = (75km + 68km) ÷ (1hr + 2hr)
As = 143km ÷ 3hr
AS = 47.66667 km/hr
AS = 47.7 km/hr (3sf)
Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.