Answer:
1. The period is 1.74 s.
2. The frequency is 0.57 Hz
Explanation:
1. Determination of the the period.
Spring constant (K) = 30 N/m
Mass (m) = 2.3 Kg
Pi (π) = 3.14
Period (T) =?
The period of the vibration can be obtained as follow:
T = 2π√(m/K)
T = 2 × 3.14 × √(2.3 / 30)
T = 6.28 × √(2.3 / 30)
T = 1.74 s
Thus, the period of the vibration is 1.74 s.
2. Determination of the frequency.
Period (T) = 1.74 s
Frequency (f) =?
The frequency of the vibration can be obtained as follow:
f = 1/T
f = 1/1.74
f = 0.57 Hz
Thus, the frequency of the vibration is 0.57 Hz
The power of man performing 500 J of work in 8 seconds is 62.5 J/s.
Power can be defined as the pace at which work is completed in a given amount of time.
Horsepower is sometimes used to describe the power of motor vehicles and other machinery.
The pace at which work is done on an item is defined as its power. Power is a temporal quantity.
Which is connected to how quickly a project is completed.
The power formula is shown below.
Power = Energy / Time
Power = E / T
Because the standard metric unit for labour is the Joule and the standard metric unit for time is the second, the standard metric unit for power is a Joule / second, defined as a Watt and abbreviated W.
Here we have given Energy as 500 J and Time as 8 second.
Power = Energy / Time
Power = 500 / 8 Joule / sec
Power = 250 / 4 Joule / sec
Power = 125 / 2 Joule / sec
Power = 62.5 Joule / sec or 62.5 watt
Power came out to be 62.5 J/s when the man performed 500 Joule of work in 8 seconds.
So we can conclude that the power in the Energy transmitted per unit of time, and can be find out by dividing Energy by time. In our case the Power came out to be 62.5 Joule / Second.
Learn more about Power here:
brainly.com/question/1634438
#SPJ10
Answer:
Explanation:
Waves involve the transport of energy without the transport of matter. In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter.
M = mass of the whale = 1000 kg
m = mass of the seal = 200 kg
V = initial velocity of whale before collision with the seal = 6.0 m/s
v = initial velocity of the seal before collision with the whale = 0 m/s
V' = final velocity of two sea creatures after collision = ?
Using conservation of momentum
M V + m v = (M + m) V'
inserting the above values in the equation
(1000 kg) (6.0 m/s) + (200 kg) (0 m/s ) = (1000 kg + 200 kg) V'
6000 kgm/s + 0 kgm/s = (1200 kg) V'
V' = (6000 kgm/s ) /(1200 kg)
V' = 5 m/s