I. The solubility of NaCl at 25 degrees C would be between the solubilities at 20 and 30 degrees C. A reasonable answer would be 36 grams/100 g water
ii. From the table, it’s clear that the salts are more soluble at higher temperatures, indicating that an increase in temperature increases solubility.
iii. At 50 degrees C, a saturated ammonium chloride solution will have 50.6 grams of salt per 100 g water. At 20 degrees C, the solution can hold only 37.3 grams of salt per 100 g water. Thus, 13.3 grams of salt will precipitate per 100 grams of water.
Answer: Reducing agent in the given reaction is
.
Explanation:
A reducing agent is defined as an element which tends to lose electrons to other element leading to an increase in its oxidation number.
In the given reaction, oxidation state of sulfur in
is +2 and
has 0 oxidation state.
In
oxidation state of S is 2.5 and in
oxidation state of I is -1.
Since, an increase in oxidation state of S is occurring from +2 to +2.5. Hence, it is acting as a reducing agent.
Thus, we can conclude that reducing agent in the given reaction is
.
Mass number = protons + neutrons = 34+46 =80
the element with an atomic number of 34 and mass number of 80 is selenium
<h3>
Answer:</h3>
P₂ = 0.67 atm
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Gas Laws</u>
Boyle's Law: P₁V₁ = P₂V₂
- P₁ is pressure 1
- V₁ is volume 1
- P₂ is pressure 2
- V₂ is volume 2
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] P₁ = 2.02 atm
[Given] V₁ = 4.0 L
[Given] V₂ = 12.0 L
[Solve] P₂
<u>Step 2: Solve</u>
- Substitute in variables [Boyle's Law]: (2.02 atm)(4.0 L) = P₂(12.0 L)
- [Pressure] Multiply: 8.08 atm · L = P₂(12.0 L)
- [Pressure] [Division Property of Equality] Isolate unknown: 0.673333 atm = P₂
- [Pressure] Rewrite: P₂ = 0.673333 atm
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our smallest.</em>
0.673333 atm ≈ 0.67 atm
Answer:
Temperature of boiling water cannot be measured by a Clinical thermometer The reason behind this is that the range of clinical thermometer varies between only 35° C to 42° C.