After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
Answer:The answer is D.1,3
Explanation:
Answer:
A colloid is a heterogeneous mixture in which the dispersed particles are intermediate in size between those of a solution and a suspension. The particles are spread evenly throughout the dispersion medium, which can be a solid, liquid, or gas.
Explanation:
Answer:
b. Second order in NO and first order in O₂.
Explanation:
A. The mechanism
![\rm 2NO\xrightarrow[k_{-1}]{k_{1}}N_{2}O_{2} \, (fast)\\\rm N_{2}O_{2} + O_{2}\xrightarrow{k_{2}} 2NO_{2} \, (slow)](https://tex.z-dn.net/?f=%5Crm%202NO%5Cxrightarrow%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7DN_%7B2%7DO_%7B2%7D%20%5C%2C%20%28fast%29%5C%5C%5Crm%20N_%7B2%7DO_%7B2%7D%20%2B%20O_%7B2%7D%5Cxrightarrow%7Bk_%7B2%7D%7D%202NO_%7B2%7D%20%5C%2C%20%28slow%29)
B. The rate expressions
![-\dfrac{\text{d[NO]} }{\text{d}t} = k_{1}[\text{NO]}^{2} - k_{-1} [\text{N}_{2}\text{O}_{2}]^{2}\\\\\rm -\dfrac{\text{d[N$_{2}$O$_{2}$]}}{\text{d}t} = -\dfrac{\text{d[O$_{2}$]}}{\text{d}t} = k_{2}[ N_{2}O_{2}][O_{2}] - k_{1} [NO]^{2}\\\\\dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= k_{2}[ N_{2}O_{2}][O_{2}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BNO%5D%7D%20%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BNO%5D%7D%5E%7B2%7D%20-%20k_%7B-1%7D%20%5B%5Ctext%7BN%7D_%7B2%7D%5Ctext%7BO%7D_%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5C%5Crm%20-%5Cdfrac%7B%5Ctext%7Bd%5BN%24_%7B2%7D%24O%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D%20-%20k_%7B1%7D%20%5BNO%5D%5E%7B2%7D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D)
The last expression is the rate law for the slow step. However, it contains the intermediate N₂O₂, so it can't be the final answer.
C. Assume the first step is an equilibrium
If the first step is an equilibrium, the rates of the forward and reverse reactions are equal. The equilibrium is only slightly perturbed by the slow leaking away of N₂O₂ to form product.
![\rm k_{1}[NO]^{2} = k_{-1} [N_{2}O_{2}]\\\\\rm [N_{2}O_{2}] = \dfrac{k_{1}}{k_{-1}}[NO]^{2}](https://tex.z-dn.net/?f=%5Crm%20k_%7B1%7D%5BNO%5D%5E%7B2%7D%20%3D%20k_%7B-1%7D%20%5BN_%7B2%7DO_%7B2%7D%5D%5C%5C%5C%5C%5Crm%20%5BN_%7B2%7DO_%7B2%7D%5D%20%3D%20%5Cdfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D)
D. Substitute this concentration into the rate law
![\rm \dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= \dfrac{k_{2}k_{1}}{k_{-1}}[NO]^{2} [O_{2}] = k[NO]^{2} [O_{2}]](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20%5Cdfrac%7Bk_%7B2%7Dk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D%20%3D%20k%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D)
The reaction is second order in NO and first order in O₂.