Answer:
4d orbital.
Explanation:
Hello!
In this case, since zirconium's atomic number is 40, we fill in the electron configuration up to 40 as shown below:

Thus, the orbital 4d is partially filled.
Best regards!
The balanced nuclear equations for the following:(a) β⁻ decay of silicon-32 is (27,14)Si -> (0,-1)beta + (27,15)P
<h3>
What is balanced nuclear equation?</h3>
A nuclear reaction is generally expressed by a nuclear equation, which has the general form, where T is the target nucleus, B is the bombarding particle, R is the residual product nucleus, and E is the ejected particle, and Ai and Zi (where I = 1, 2, 3, 4) are the mass number and atomic number, respectively. Finding a well balanced equation is critical for understanding nuclear reactions. Balanced nuclear equations provide excellent information about the energy released in nuclear reactions. Balancing the nuclear equation requires equating the total atomic number as well as the total mass number before and after the reaction using the rules of atomic number and mass number conservation in a nuclear reaction.
To learn more about nuclear equations visit:
brainly.com/question/12221598
#SPJ4
According to Kepler's second law of orbital motion, a plane's orbital speed changes , depending on how far it is from the sun. The closer a planet is to the sun, the stronger the sun's gravitational pull on it, and the faster the planet moves. The farther away from the sun, the weaker the sun's gravitational pull and the slower it moves in its orbit.
The orbit of a planet around the sun is not a perfect circle, but an ellipse - a flattened circle.
When naming an ionic compound, write the name of the cation, which is the metal first. Then, write the name of the anion, which is the nonmetal. However, you remove the last 2-3 letters and replace suffixes.
1. RbF --> Rubidium Fluoride
Change fluorine to fluoride
2. CuO --> Copper (II) Oxide
Change oxygen to oxide. Oxide has a charge of -2. Since no subscripts are written, it means they have the same opposite charge. So, we use Copper (II).
<span>3. (NH</span>₄<span>)</span>₂<span>C</span>₂<span>O</span>₄ ---> Ammonium Oxalate
NH₄ is ammonia, but we change it to ammonium for polyatomic ions.
Answer:
I would expect to extract the acetic acid.
Explanation:
In the first step, since we are adding a concentrated acid,<u> it will react with the bases present in the mixture (diethylamine and ammonia) </u><u>forming salts</u><u>, </u><u>which are soluble in water</u>. Therefore, after draining the aqueous layer, we will have phenol and acetic acid left in the organic layer.
In the second step, we are adding a diluted base, so it will react with a strong acid. This compound is acetic acid, and its salt will be present in the aqueous layer. Phenol will be left on the organic layer.