Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:
The mixture would contain
if undergoes no hydrolysis; the solution is of volume after the mixing. The two species would thus be of concentration and , respectively.
Construct a RICE table for the hydrolysis of under a basic aqueous environment (with a negligible hydronium concentration.)
The question supplied the <em>acid</em> dissociation constant for acetic acid ; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant for its conjugate base, . The following relationship relates the two quantities:
... where the water self-ionization constant under standard conditions. Thus . By the definition of :
Answer:
Please refer to the attachment for answers.
Explanation:
Please refer to the attachment for explanation
I believe that sugar is a compound because there are elements that make up sugar