Mg(NO3)2 => <span>Magnesium nitrate
hope this helps!</span>
Answer:
All are correct
Explanation:
1) The angular momentum quantum number, l, are the subshells within a shell (principle quantum number) it talks about the "form" of an orbital, the number itself tells you about the number of angular nodes (a plane without electronic density). It starts at l=0 where you don't see any nodes and it takes the form of an sphere, and we knowing it bu another name an s-orbital. It takes values up to n-1.
l=0 (sphere - s-orbital)
l=1 (p-orbital)
l=2 (d-orbital)
2) The magnetic quatum number, ml relates to the number of orbitals within a subshell then it is related with l, taking values form -l to l incluing 0.
For l=0 (s-orbital) ml=0
For l=1 (p-orbital) ml=1,0,-1
For l=2 (d-orbital) ml=2,1,0,-1,-2
3) In every shell we are restricted by the total number of nodes of any orbital. Then if we want a d-orbital with l=3 we need at least 3 plane nodes only achievable with n=3 at least.
Answer:
a) 
2 moles of Zinc sulphide in solid form reacts with 3 moles of Oxygen in gaseous form to give 2 moles of Zinc oxide in solid form and 2 moles of sulphur dioxide in gaseous form.
b) 
1 mole of calcium hydride in solid form reacts with 2 moles of liquid water to give 1 mole of calcium hydroxide dissolved in water and 2 moles of hydrogen in gaseous form.
The chemical reactions are written by writing the chemical formula of the reactants on left side of the arrow followed by chemical formula of the products. The number of atoms of each element must be balanced to follow the law of conservation of mass.
Answer:
The kinetic energy of an object is also measured in joules. Anything that is moving has kinetic energy, but various factors affect how much kinetic energy an object has. The first factor is speed. If two identical objects are moving at different speeds, the faster object has more kinetic energy. In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Explanation: