Answer:
Increased
Explanation:
We know that the higher the temperature the higher the rate of reaction. This implies that as the temperature is increased, a reaction tends to proceed faster.
This follows from the collision theory, the higher the temperature, the higher the energy of the reacting particles hence they collide with each other faster and more effectively.
Thus the rate of reaction( or reaction time) for the carton of milk on the counter was increased.
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Answer:
The correct statement is that the point of initial resistance is the level of depression that will fill the pipette with the desired volume of solution.
Explanation:
The pipette can be otherwise stored vertically or horizontally, this has nothing to do with the operation, and before the operation, the dial needs to be set. Also, the plastic pipette tip should not be ejected at all, thus, no new disposable plastic tip is required for each sample.
The correct statement is that the point of initial resistance is the level of depression that will fill the pipette with the desired volume of solution.