Because the equator is closer to the sun, the sun rays hit the earth’s surface which causes the temperature to be warm at a higher angle at the equator,
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.
The rate law for the reaction : r=k.[A]²
<h3>Further explanation</h3>
Given
Reaction
A ⟶ B + C
Required
The rate law
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For the second-order reaction it can be:
1. the square of the concentration of one reactant.
![\tt r=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5E2)
2. the product of the concentrations of two reactants.
![\tt r=k[A][B]](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5BB%5D)
And the reaction should be(for second order) :
2A ⟶ B + C
Thus, for reaction above (reactant consumption rate) :
![\tt r=-\dfrac{\Delta A}{2\Delta t}=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3D-%5Cdfrac%7B%5CDelta%20A%7D%7B2%5CDelta%20t%7D%3Dk%5BA%5D%5E2)
Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps
Astronomers measure the brightness of stars using light-years. This means that the light we see now left in that years ago, traveling through space in that distance at kilometer per second.
A star is born, it radiates energy for a long time, toward the end it expands, it may or may not explode, and then it dies. It vary in sizes, masses and surface temperature range. The colors of stars reflect their surface temperature. Their relative brightness is expressed in a scale of six magnitudes. The brightest the stars are first-magnitude stars, while the dimmest are sixth-magnitude stars.
The lower the number, the brighter the star.
For example:
Star color Surface Temperature
Blue-white around 25 000 K & higher
white around 10 000 K
yellow around 7 000 K
Red around 5 000 K & lower