Answer:
Explanation:
The first law of Thermodynamics is known as Conservation because it explains that energy is always maintained within a closed system and cannot be created or destroyed. Therefore, this is observed when there is no longer change in temperature in a system. Mainly because the energy is not being transferred to and from another system. Without this transfer of energy, the energy itself gets conserved within the system and the temperature no longer fluctuates.
Answer:
- What is the AGⓇ of this reaction? 0.
- Which will be favoured - the forward reaction, the reverse reaction, or neither? Neither.
- What effect does the presence of the enzyme aspartate transaminase have on the Key value when compared with its value in the absence of enzyme? It does not affect the value of Keq.
- If one of the products of reaction 1, oxaloacetate, is removed by converting it to citrate as follows: Reaction 2: oxaloacetate + acetyl-CoA citrate + COASH will the key for Reaction l be changed? No, the Keq does not change.
Explanation:
1. To calculate the delta G of a reaction given the K, we use the following equation:
ΔG°= -RT ln K.
Which gives us 0 when K is 1.
2.None of the reactions is favoured. Given that the K equals 1, the system will try to keep the concentration of both products and reagents the same.
3. A catalyst is a substance that, when added, provides a different and faster mechanism through which a reaction takes place. This only means that the speed at which the equilibrium is attained is reduced, but the enzyme does nothing to alter the difference in energy (ΔG°) of the start and end points of the reaction, which ultimately gives us the value of Keq.
4. The addition of a side reaction does not change the value of Keq for the main reaction. They are both separate ways of making oxaloacetate disappear. While the Keq does not change, keep in mind that the end concentrations will not be the same, for any set of starting concentrations of your substances.
Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)
The weight of 98kg is 216.053 pounds.
I think its an Ionic bond although i am not sure about