Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
We will use boiling point formula:
ΔT = i Kb m
when ΔT is the temperature change from the pure solvent's boiling point to the boiling point of the solution = 77.85 °C - 76.5 °C = 1.35
and Kb is the boiling point constant =5.03
and m = molality
i = vant's Hoff factor
so by substitution, we can get the molality:
1.35 = 1 * 5.03 * m
∴ m = 0.27
when molality = moles / mass Kg
0.27 = moles / 0.015Kg
∴ moles = 0.00405 moles
∴ The molar mass = mass / moles
= 2 g / 0.00405 moles
= 493.8 g /mol
Answer:
are those the answer choice
The energy of 393 kJ is released as heat. Then, the container will experience an increase of temperature and, given that it is sealed, also an increase of pressure.
The increase of temperature results from the heat developed during the reaction.
The increase of pressure results from the fact that that the solid carbon will become gaseuos carbon dioxide. This gas will occupy a larger volume than the solid carbon and also this elevation of the temperature will make the pressure of the gas inside the container increase.
<span>There is no chemical reaction between potassium nitrate and water. Potassium nitrate dissolves in water, which is a physical change.</span>