The balanced net equation for
BaCl2 (aq) + H2SO4(aq) → BaSO4(s) + HCl (aq) is
Ba^2+(aq) +SO4^2- → BaSO4 (s)
<u><em>Explanation</em></u>
Ionic equation is a chemical equation in which electrolytes in aqueous solution are written as dissociated ions.
<u>ionic equation is written using the below steps</u>
Step 1: <em>write a balanced molecular equation</em>
BaCl2 (aq) +H2SO4 (aq)→ BaSO4(s) +2HCl (aq)
Step 2: <em>Break all soluble electrolytes in to ions</em>
= Ba^2+ (aq) + 2Cl^-(aq) + 2H^+(aq) + SO4^2-(aq)→ BaSO4(s) + 2H^+(aq) +2Cl^- (aq)
step 3: <em>cancel the spectator ions in both side of equation ( ions which do not take place in the reaction)</em>
<em> </em><em> =</em> 2Cl^- and 2H^+ ions
Step 4: <em>write the final net equation</em>
<em> Ba^2+(aq) + SO4^2-(aq)→ BaSO4(s</em><em>)</em>
As long as the chemical is not used up in the reaction the answer is true
Answer:
Part 1. When the balloon is filled half of the way, and placed into the freezer, it will shrink. This happens because kinetic molecular theory tells us that a decrease in temperature decreases the kinetic energy of the gas molecules in the balloon. Viscous gases like hydrogen are less likely to shrink.
Part 2. When the balloon is placed out in the hot sun, most likely the balloon will swell and grow. This happens because the kinetic energy of the gas molecules increases due to solar radiation transforming into heat energy and then transforming into kinetic energy. Sticky gases like neon are more likely to grow.
Explanation:
Answer: Plate tectonics was Wegener's theory that Earth's continents rest on sections of Earth's crust that drift together and apart over time; continental drift is a hypothesis describing how plate tectonics might happen.
Explanation: Tectonic plate movement is a long-term environmental change.
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.