Answer: YES!
Explanation:
Ox2 Co2 Hydrogen and Corossion 3
Answer:
Option e.
Explanation:
The option 'e' fact about Hydrogen bonds are correct, that is; ''form weak interactions but can provide structural stability when many are found in a single molecule''.
So, what is this Hydrogen bond?
Hydrogen bonds is a kind of strong dipole- dipole attractions. Hydrogen bonding occurs as a result of the bonding between hydrogen and strongly electronegative atoms for example oxygen, Fluorine and so on.
Since we now know what Hydrogen bond is, let us take a look at the options.
(a) for the first option, we can see from above meaning of Hydrogen bonds that Hydrogen bonds occur between Hydrogen and a strong Electronegative atom. So, this option is wrong.
(b). Option 'b' is also wrong Because Hydrogen bonds does not occur between hydrogen and oxygen atoms ONLY but also with other strong Electronegative atoms such as oxygen.
(c). Option 'c' is wrong because between a strong and not only between a weak electronegative atom and hydrogen.
(d). Option 'd' is also not correct.
(e). Option 'e' is correct. Hydrogen bonds contribute to the effect of boiling and melting point of substance, solubilty, dimerization, strength of bonds, shape of molecules and so on
You did not include the options but I can tell you the product ratio.
The product ratio is the mole ratio of the products of the reaction.
From the balanced chemical equation you have all the mole ratios:
The given equation is: 2 C6H5COOH + 15O2 --> 14 CO2 + 6H2O
The mole ratios are: 2 C6H5COOH: 15 O2: 14 CO2 : 6 H2O
The products are CO2 and H2O
Their mole ratio = 14 CO2 : 6 H2O
That can be expressed as:
14 mol CO2 7 mol CO2
----------------- = -----------------
6 mol H2O 3 mol H2O
It is also the same that:
6 mol H2O : 14 mol CO2
6 mol H2O 3 mol H2O
------------------ = -------------------
14 mol CO2 7 mol CO2
So, compare your options to the ratios show above and pick the proper ratio.
Answer:
Changing the surface area from minimum to maximum increases the number of reactants in a chemical reaction.
An increase in surface area of a solid reactant means more of its particles are exposed to attack by the other Particle. This results in an increased chance of collisions between reactant particles, so there are more collisions in any given time and the rate of reaction increases.