Answer:
the SI unit of momentum is :- kg.ms-1
and we know that,
kinetic energy = 1/2 mv2
E=p2/2m
p=(2Em)1/2
so the derived units are (J.kg)1/2
Explanation:
Explanation:
Given:
v₀ = 0 m/s
v = 49 m/s
a = 9.8 m/s²
Find: t
v = at + v₀
49 m/s = (9.8 m/s²) t + 0 m/s
t = 5 s
Answer:
ok so
Explanation:
Im not sure rn but ill get back to you.
Answer:
(d) not enough info
Explanation:
because it doesn't specify where the strings are attached
if it was the two ends of the rod then T1 would be equal to T2
Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s