Both positive work and negative work have meaning: Positive work follows when the force has a component parallel to the displacement. Positive work adds energy to a system. Negative work follows when the force has a component opposite or against the displacement.
<span>Since there is no friction, conservation of energy gives change in energy is zero
Change in energy = 0
Change in KE + Change in PE = 0
1/2 x m x (vf^2 - vi^2) + m x g x (hf-hi) = 0
1/2 x (vf^2 - vi^2) + g x (hf-hi) = 0
(vf^2 - vi^2) = 2 x g x (hi - hf)
Since it starts from rest vi = 0
Vf = squareroot of (2 x g x (hi - hf))
For h1, no hf
Vf = squareroot of (2 x g x (hi - hf))
Vf = squareroot of (2 x 9.81 x 30)
Vf = squareroot of 588.6
Vf = 24.26
For h2
Vf = squareroot of (2 x 9.81 x (30 – 12))
Vf = squareroot of (9.81 x 36)
Vf = squareroot of 353.16
Vf = 18.79
For h3
Vf = squareroot of (2 x 9.81 x (30 – 20))
Vf = squareroot of (20 x 9.81)
Vf = 18.79</span>
Answer:
Approximately
.
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (
) is equal to
.
There are two half-reactions in this question.
and
. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of
should be positive.
In this case,
is positive only if
is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to
.
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
is the number moles of electrons transferred for each mole of the reaction. In this case the value of
is
as in the half-reactions.
is Faraday's Constant (approximately
.)
.
Answer;
The mass value for the above kinetic energy equation is 400.0000 kg. This is equal to:
■ 400,000.0000 g.
■ 14,109.6000 ounces.
■ 881.8480 pounds.
You need to use Planck's law:
E = h·υ = (h·c)/λ
Without making all the calculations, a fraction is bigger than another when the denominator is smaller. Therefore you need to find the smallest wavelength (λ) which is 450nm.
You could also be helped by colors: in order of decreasing energy, you have blue - green - yellow - red.
In any case, the correct answer is a).