Answer:
7.0s
Explanation:
Mass = 0.41kg
F= 81N
t = 0.22s
¤ = 29°
Lo = 86m
From impulse equation,
F*t = m* v
81 * 0.22 = 0.41 * v
Vo = 17.82 / 0.41
Vo = 43.46m/s
Vx= velocity across horizontal plane
Vy = velocity across vertical plane
Vx = Vo * cos ¤
Vy = Vo * sin ¤
Vx = 43.46 * cos 30° = 37.64 m/s
Vy = 43.46 sin 30° = 21.73 m/s
Distance travelled across the vertical plane,
L = Lo + Vy *t + ½gt²
0 = 86 + 21.73t - 4.9t²
4.9t² - 21.73t - 86 = 0
Solving for t in the quadratic equation,
t = 6.96 or -10.04
Using the positive root since time can't be negative, t = 6.96 approximately 7.0s
It's also known as a stationary wave.
When you drink water that was in the car heated, you can get headaches and it would make you dizzy. I know a little bit because it happen to my dad.
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Answer:
A. 98,000 J
Explanation:
The gravitational potential energy of an object is given by
U = mgh
where
m is the mass of the object
g is the gravitational acceleration
h is the heigth above the ground
In this problem,
m = 2000 kg
g = 9.8 m/s^2
h = 5.0 m
Substituting into the equation, we find
