The Answer is:
O 3s
Hope you got it right.
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW
Answer:
Force = -91.7 Newton
Explanation:
Given the following data;
Mass = 47 kg
Time = 4.1 seconds
Initial velocity = 8 m/s
Since the object comes to a stop, its final velocity would be equal to zero.
To find the force required to bring it to stop;
First of all, we would determine the acceleration of the object;
Mathematically, acceleration is given by the equation;

Substituting into the equation;
Acceleration, a = -1.95 m/s²
Next, we would determine the force required to bring the object to stop;
Force = -91.65 ≈ 91.7 Newton
Answer:
72 beats per minute
Explanation:
Heart beat causes the flow of blood round the body. This heart beat can be felt as pulse in the wrist or neck carotid artery. The heart rate which is measured in beats per minute (BPM) is used to determine the number of heart beats per minute.
You can calculate your BPM using the carotid artery found in the neck close to the windpipe.
Given that for 20 seconds, Bill had a total of 24 beats.
60 seconds = 1 minute.
Hence, Bill's BPM = (24 beats per 20 seconds) * (60 seconds per minute) = 72 beats per minute
Given :
A spring with a spring constant of 1730 N/m is compressed 0.136 m from its equilibrium position with an object having a mass of 1.72 kg.
To Find :
The embankment in the height.
Solution :
Since no external force is acting in the system, therefore total energy will be conserved.
Initial kinetic energy of the object = Energy stored in spring

Also, initial potential energy is 0.
Now,

Therefore, the embankment height is 0.64 m.