Answer:
L = 0.99 m = 99 cm
Explanation:
The period is the reciprocal of the frequency.
T = 1/0.5 = 2.0 s
T = 2π√(L/g)
L = g(T/2π)²
L = 9.8(2.0/2π)² = 0.99 m
If the system accelerates upward, it will cause the apparent gravity to increase. This will require a longer pendulum to keep the same period, or shorten the period if the length remains the same. This shows up in the equation where the product of gravity and the square of the period must remain constant for the length to remain constant.
The answer is; C
In particular points in the earth’s surface, underground water is naturally heated to steam that can be harness for geothermal energy. The steam that ejects from the ground with high kinetic energy can be used to turn turbines that generate electricity. The underground water is usually heated by the hot rocks beneath that are subjected to the immense heat of magma or the enormous pressure of overlying crust.
Answer:
The induced emf is 
Explanation:
From the question we are told that
The number of turn is 
The diameter of the coil is 
The uniform magnetic at initial is 
The uniform magnetic at initial is 
The time taken is
The angle the magnetic field makes with vertical is 
Generally induced emf is mathematically represented as

where
is the change magnetic flux
Magnetic flux is mathematically represented as


Substituting this above


Where B is the magnetic field and A is the area which is mathematically evaluated as

Substituting values


From the equation of emf

dB = 
So

substituting values


The speed of the second mass after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
<h3>
What are we to consider in equilibrium ?</h3>
Whenever the friction in the pulley is negligible, the two blocks will accelerate at the same magnitude. Also, the tension at both sides will be the same.
Given that a large mass m1=5.75 kg and is attached to a smaller mass m2=3.53 kg by a string and the mass of the pulley and string are negligible compared to the other two masses. Mass 1 is started with an initial downward speed of 2.13 m/s.
The acceleration at which they will both move will be;
a = (
-
) / (
+
)
a = (5.75 - 3.53) / (5.75 + 3.53)
a = 2.22 / 9.28
a = 0.24 m/s²
Let us assume that the second mass starts from rest, and the distance covered is the h = 2.47 m
We can use third equation of motion to calculate the speed of mass 2 after it has moved ℎ=2.47 meters.
v² = u² + 2as
since u =0
v² = 2 × 0.24 × 2.47
v² = 1.1856
v = √1.19
v = 1.0888 m/s
Therefore, the speed of mass 2 after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
Learn more about Equilibrium here: brainly.com/question/517289
#SPJ1