Y = e^tanx - 2
To find at which point it crosses x axis we state that y= 0
e^tanx - 2 = 0
e^tanx = 2
tanx = ln 2
tanx = 0.69314
x = 0.6061
to find slope at that point first we need to find first derivative of funtion y.
y' = (e^tanx)*1/cos^2(x)
now we express x = 0.6061 in y' and we get:
y' = k = 2,9599
Answer: c and e
Step-by-step explanation:
Answer $22.50
Step-by-step explanation:
$9 X 2 = 18 and 6 oranges + 6 oranges = 12
if you divide 9 by 6 you get 1.5 so that means its 1.50 for each orange individually.
which makes 15 oranged 22.50
To answer this question, you should set up and equation before doing anything else. So for this question you 're going to set up two equations.
The first equation is 2x+5y=33
The second equation is 8x+3y=30
Once you do that you have to solve for either X or Y by canceling out the other one. In this problem figuring out the Y is easier because you can cancel the X's more easily than the Y. To cancel a variable, they have to add up to 0.
So to cancel the X you multiply the equation 2x+5y=33 by -4.
That gives you -8x-20y= -132
Then you set up the two equations and add them together.
(-8x-20y= -132) + (8x+3y=30)
That gives you -17y = -102
So then you solve for Y by dividing by -17. You find out that Y is equal to 6. Then you plug the 6 back into the ORIGINAL equations and solve for X, which turns out to be 1.5
Hope this helped and if you get confused or have questions please ask :)
Answer:
4: 19
5: 20
6: 21
Step-by-step explanation:
So it says to use the equation t=q+15, so 4+15 is 19, 5+15=20, 6+15=21