Answer:
if 2,000 is the original rent and it increases by 20% the new rent is $2,400.
Step-by-step explanation:
this is because 10% of $2,000 is 200 so 20% is $400
Answer:
The answer is cosx cot²x ⇒ the first answer
Step-by-step explanation:
∵ cot²x = cos²x/sin²x
∵ secx = 1/cosx
∴ cot²x secx - cosx = (cos²x/sin²x)(1/cosx) - cosx
= (cosx/sin²x) - cosx
Take cosx as a common factor
∴ cosx[(1/sin²x) - 1] ⇒ use L.C.M
∴ cosx[1-sin²x/sin²x]
∵ 1 - sin²x = cos²x
∴ cosx(cos²x/sin²x) = cosx cot²x
9514 1404 393
Answer:
$2.50
Step-by-step explanation:
The question asks for the total cost of a notebook and pen together. We don't need to find their individual costs in order to answer the question.
Sometimes we get bored solving systems of equations in the usual ways. For this question, let's try this.
The first equation has one more notebook than pens. The second equation has 4 more notebooks than pens. If we subtract 4 times the first equation from the second, we should have equal numbers of notebooks and pens.
(8n +4p) -4(3n +2p) = (16.00) -4(6.50)
-4n -4p = -10.00 . . . . . . . . . . . simplify
n + p = -10.00/-4 = 2.50 . . . . divide by the coefficient of (n+p)
The total cost for one notebook and one pen is $2.50.
__
<em>Additional comment</em>
The first equation has 1 more notebook than 2 (n+p) combinations, telling us that a notebook costs $6.50 -2(2.50) = $1.50. Then the pen is $2.50 -1.50 = $1.00.
One could solve for the costs of a notebook (n) and a pen (p) individually, then add them together to answer the question. We judge that to be more work.
Answer:
C. 
Step-by-step explanation:
Given: 
To find the domain of a logarithmic function, we need to take the argument, 8x, and set it greater to zero. This is because an argument of a logarithmic function cannot be zero or negative.


So since x is greater than zero, we have just found out our domain:
Interval Notation: (0, ∞)
Set Notation: {
}