1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
3 years ago
12

Evaluate: 5-3 xwhen x=-7 Substitute-7 for x.

Mathematics
1 answer:
Mice21 [21]3 years ago
7 0
The answer for this question is 26
You might be interested in
Ms. Johnson owns a cabinet business that installs cabinets in kitchens. Her employees can install 2/3 of a kitchen cabinet set i
dmitriy555 [2]

Answer:

I don't know

Step-by-step explanation:

hi

8 0
3 years ago
Select the correct answer.
sergejj [24]
G(x)/f(x) will be simplified to (x+3)(x-3)/2-x^1/2,
which will give you [0,4) ∪(4, ∞).
Choice B
5 0
3 years ago
Please help me, i don’t understand this question nor how to do it !!!!
Fantom [35]

Step-by-step explanation:

See attached picture.

First, compare the highest term of the dividend (x²) to the highest term of the divisor (x).  We need to multiply the divisor by x.

When we do that, we get x² + 5x.  Subtracting this from the dividend, we get -9x + 11.

Now repeat the process.  Compare the highest term of the new dividend (-9x) to the highest term of the divisor (x).  We need to multiply by -9.

When we do that, we get -9x − 45.  When we subtract from the new dividend, we get 56.

So the quotient is x − 9, and the remainder is 56.

6 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
1. 4x + 11= 14 + 15x
goldenfox [79]

Answer:

Step-by-step explanation:

4x + 11 = 14 + 15x

14 + 15x = 4x + 11

11x = -3

x = -3/11

7 0
3 years ago
Read 2 more answers
Other questions:
  • On a coordinate plane, point A is at (3, 3) and point B is at (negative 3, 3). Point B is the image of point A when A is rotated
    10·1 answer
  • If you divided 26 objects into sets of 6, how many sets of 6 could you make, and how many are left over?
    12·2 answers
  • What does X-5,4-2 mean
    9·1 answer
  • Bananas cost $0.85 per pound. What equation is used to find c, the total cost of p pounds of bananas? A)C=0.85p B) C= p + 0.85 C
    11·2 answers
  • When solving using the quadratic formula, what does the discriminant tell you about the nature of the roots?
    5·1 answer
  • A runner has a mass of 89 kg he produces aforce of 84 Newtons between the ground and his running shoes How fast does he accelera
    11·1 answer
  • Help me with this!! Will mark Brainliest
    11·1 answer
  • Sunny earns $12 per hour delivering cakes. She worked for x hours for this week. Unfortunately,she was changed $15 for a late de
    8·1 answer
  • WILL MARK BRAINLIST‼️<br><br>7/12 as a reccuring decimal (dot notation)​
    7·2 answers
  • A tablet sells for $280 at both jades craft corner and arties art shack. All items at jades craft corner are on sale for 25% off
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!