Answer:
Explanation:
Given
Potential Energy is given by
And Force is given by
Particle will be at equilibrium when Potential Energy is either minimum or maximum
i.e.
So angular Frequency of small oscillation is given by
for
we get
Answer:
The corridor's distance is "90 m".
Explanation:
- She heads in the east directions but creates the first pause, meaning she crosses the distance 'x' in step 1.
- Now, provided that perhaps the distance by her to another fountain or waterfall just after the first stop is twice as far away she traveled.
- Because she moved the distance of 'x,' then, therefore, her distance towards the fountain of '2x.' She casually strolls and once again pauses 60 m beyond her stop.
- The gap about her to the waterfall during that time approximately twice the distance and her to the eastern end of the hallway.
- Assume her gap from either the east end of the platform seems to be 'y' at either the second stop, after which '2y' may become the distance between the 2nd pause and the waterfall.
Now,
⇒
⇒
The total distance of the corridor will be:
=
=
=
=
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,
Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T
The number of the atoms N, can be calculated as,
Where
Density
Molar Mass
A = Area
L = Length
Avogadro number
Then applying the equation about the dipole moment associated with an iron bar we have,
PART B) With the dipole moment we can now calculate the Torque in the system, which is
<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>