Answer:
Precipitation is the formation of a solid from a solution. It is necessary to centrifuge the precipitate to exert sufficient forces of gravity to bring the solid particles in the solution to come together and settle
Explanation:
When you centrifuge precipitate it enables the nucleation to form.
Centrifuging the precipitate helps in determining whether a certain element is present in a solution or not.
Answer:
"Narrow the focus of research question"
Explanation:
O Narrow the focus of research question
This is good! You can still use your question, but focus in on something so you have a proper research project.
O Add another research question
Would adding another question to an already broad question help? No.
O Use the very first source you find for your project
If your question is too broad, you should not use whatever you see first as it may be incorrect or does not answer the question
O Change the scope of your project
You could, but if you have a set scope for your project (a) you might not be able to change it (b) you don't need to restart
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Answer:
The vertical velocity of the skater upon landing is 10.788 meters per second.
Explanation:
Skateboarder experiments a parabolic movement. As skateboarder jumps horizontally off the top of the staircase, it means that vertical component of initial velocity is zero and accelerates by gravity, the final vertical speed is calculated by the following expression:

Where:
- Initial vertical speed, measured in meters per second.
- Final vertical speed, measured in meters per second.
- Gravitational acceleration, measured in meters per square second.
- Time, measured in seconds.
Given that
,
and
, the final velocity of the skater upon landing is:


The vertical velocity of the skater upon landing is 10.788 meters per second.
Answer:
K = 588.3 N/m
Explanation:
From a forces diagram, and knowing that for the maximum value of K, the crate will try to rebound back up (Friction force will point downward):
Fe - Ff - W*sin(22) = 0 Replacing Fe = K*X and then solving for X:

By conservation of energy:

Replacing our previous value for X and solving the equation for K, we get maximum value to prevent the crate from rebound:
K = 588.3 N/m
Answer:
This question appear incomplete
Explanation:
This question appear incomplete. However, the density of water is generally known to be 997 kg/m³. The formula used to determine density is mass ÷ volume. In the case of the density of water, the mass is measured in kilograms (kg) while the volume is measured in cubic meter (m³).