Explanation & answer:
Given:
Fuel consumption, C = 22 L/h
Specific gravity = 0.8
output power, P = 55 kW
heating value, H = 44,000 kJ/kg
Solution:
Calculate energy intake
E = C*P*H
= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)
= (22/3600)*1000*0.8*44000 j/s
= 215111.1 j/s
Calculate output power
P = 55 kW
= 55000 j/s
Efficiency
= output / input
= P/E
=55000 / 215111.1
= 0.2557
= 25.6% to 1 decimal place.
Answer:
a

b

Explanation:
From the question we are told that
The wavelength of the light is 
The distance of the slit separation is 
Generally the condition for two slit interference is

Where m is the order which is given from the question as m = 2
=> ![\theta = sin ^{-1} [\frac{m \lambda}{d} ]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7Bm%20%5Clambda%7D%7Bd%7D%20%5D)
substituting values

Now on the second question
The distance of separation of the slit is

The intensity at the the angular position in part "a" is mathematically evaluated as
![I = I_o [\frac{sin \beta}{\beta} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%5Cbeta%7D%7B%5Cbeta%7D%20%5D%5E2)
Where
is mathematically evaluated as

substituting values


So the intensity is
![I = I_o [\frac{sin (0.06581)}{0.06581} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%280.06581%29%7D%7B0.06581%7D%20%5D%5E2)

Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m
1. B- electric generator
Although its really sometimes called an AC generator.
- i hoped i helped u :)
<u>Answer:</u>
First, the thermometer is dipped into boiling water, and the mercury inside the thermometer rises to a high level, called the boiling point. This level is then marked as 100°C. The thermometer is then dipped into melting ice, which causes the mercury level to fall to a point called the ice point. This point is then marked as 0°C. The length of the thermometer from the 0°C mark to the 100°C point is then divided into 100 equal sections, and the rest of the levels are marked accordingly.