Answer:
Jupiter
Explanation:
The largest planet in our solar system by far is Jupiter, which beats out all the other planets in both mass and volume. Jupiter's mass is more than 300 times that of Earth, and its diameter, at 140,000 km, is about 11 times Earth's diameter.
Note:
Please mark as Brainliest! <3
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ball is
The initial speed of the ball is 
The spring constant is 
The compression distance is 
Generally the energy stored in the string is mathematically represented as

=>
=>
Generally the kinetic energy of the ball is mathematically represented as

=>
Generally the KE the ball have when it has compressed the spring is mathematically represented as

=> 
=> 
ANSWER:
250 J
STEP-BY-STEP EXPLANATION:
F = 20N is required to stretch the spring by 4 meters
We know that the force is equal to:

We solve for k (spring constant):

The work done in stretching the spring is given by the following equation (in this case the stretch is 10 meters:

The work required is 250 joules.
<h3>
Answer: B) his muscles</h3>
Explanation:
Specifically his leg muscles. As the leg muscles expand, they push down on the ground. Newton's 3rd law says that for any action, there's an opposite and equal reaction. That means a downward push into the ground will have the ground push back, more or less, and that's why the kangaroo will jump. The ground (and the earth entirely) being much more massive compared to the animal means that the ground doesn't move while the kangaroo does move. Perhaps on a very microscopic tiny level the ground/earth does move but it's so small that we practically consider it 0.
This experiment can be done with a wall as well. Go up to a wall and lean against it with your hands. Then do a pushup to move further away from the wall, but you don't necessarily need to lose contact with the wall's surface. As you push against the wall, the wall pushes back, and that causes you to move backward. If the wall was something flimsy like cardboard, then you could easily push the wall over and you wouldn't move back very much. It all depends how much mass is in the object you're pushing on.