The velocity of the electron after moving a distance of 1cm in the electric field is 5.95×10⁶m.
<h3>What is Electric field?</h3>
Electric field is the physical field that surrounds a charge.
<h3>How to find final velocity of the electron when it moves some distance in a certain electric field?</h3>
- From Newton's second law, the acceleration the electron will be
a=F/m=qE/m
- where q= charge of electron
E= electric field
m= mass of electron
=(−1.60×10^−19C)(3×10³N/C)/(9.11×10^-31kg)
=10¹⁵×0.526m/s²
- The kinematics equation v²=v0²+2a(Δx)
- where v=final velocity of the electron
v0=initial velocity of the electron =5×10⁶m/s
a=acceleration of the electron =10¹⁵×0.526m/s²
Δx=distance moved by the electron in east direction =1cm=10^-2m
- Now v^2=(5×10⁶)²+2×10¹⁵×0.526×10^-2
=25×10¹²+10.52×10¹²
=35.52×10¹²
- Now velocity of electron=5.95×10⁶m/s.
Thus , we can conclude that the velocity of the electron after moving a distance of 1cm in the electric field is 5.95×10⁶m.
Learn more about electric field here:
brainly.com/question/26199225
#SPJ1
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275
Answer:
Explanation:
The stunt will likely sustain serious injury in case of concrete blocks because the average force acting on the person will be more because concrete blocks do not squeeze to provide more time for the force to act on the body instead it acts for a small amount of interval.

As impulse is constant so time requires to act force on the body is more as compared to concrete block and thus average force in mattress case is less.
The snail’s speed is 0.001042. Hope this helps!