Answer:
For example, a wave with a time period of 2 seconds has a frequency of
1 ÷ 2 = 0.5 Hz.
Explanation:
Explanation:
Given that,
Angle by the normal to the slip α= 60°
Angle by the slip direction with the tensile axis β= 35°
Shear stress = 6.2 MPa
Applied stress = 12 MPa
We need to calculate the shear stress applied at the slip plane
Using formula of shear stress

Put the value into the formula


Since, the shear stress applied at the slip plane is less than the critical resolved shear stress
So, The crystal will not yield.
Now, We need to calculate the applied stress necessary for the crystal to yield
Using formula of stress

Put the value into the formula


Hence, This is the required solution.
Answer:
(1) V = 0.2 J (2) 0.05J
Explanation:
Solution
Given that:
K = 160 N/m
x = 0.05 m
Now,
(1) we solve for the initial potential energy stored
Thus,
V = 1/2 kx² = 0.5 * 160 * (0.05)²
Therefore V = 0.2 J
(2)Now, we solve for how much of the internal energy is produced as the toy springs up to its maximum height.
By using the energy conversion, we have the following
ΔV = mgh
=(0.1/9.8) * 9.8 * 1.5 = 0.15J
The internal energy = 0.2 -0.15
=0.05J
Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.
Answer:
37.725 A
Explanation:
B = magnitude of the magnetic field produced by the electric wire = 0.503 x 10⁻⁴ T
r = distance from the wire where the magnetic field is noted = 15 cm = 0.15 m
i = magnitude of current flowing through the wire = ?
Magnetic field by a long wire is given as

Inserting the values

i = 37.725 A