Answer:
37.8225 J
Explanation:
kinetic energy = 1/2 of mass x 
Answer: is a term generally covering any funding for scientific research, in the areas of both "hard" science and technology and social science. The term often connotes funding obtained through a competitive process, in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations or foundations, allocate scarce funds.
Explanation:
Answer:
B) trends method
I'm very sure of this answer
Answer:
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
Explanation:
Given:
Radius of sphere (r) = 12 cm = 0.12 m
Distance from the electric field R = 24 cm = 0.24 m
Magnitude (E) = 640 N/C
Find:
Charge density on the sphere
Computation:
Charge on the sphere (q) = (1/K)ER² (K = 9 × 10⁹)
Charge on the sphere (q) = [1/(9 × 10⁹)](640)(0.24)²
Charge on the sphere (q) = 4 × 10⁻⁹ C
Charge density on the sphere = q / [4πr²]
Charge density on the sphere = [4 × 10⁻⁹] / [4(3.14)(0.12)²]
Charge density on the sphere = [4 × 10⁻⁹] / [0.18]
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
Answer:
x = 1.26 sin 3.16 t
Explanation:
Assume that the general equation of the displacement given as
x = A sinω t
A=Amplitude ,t=time ,ω=natural frequency
We know that speed V

V= A ω cosωt
Maximum velocity
V(max)= Aω
Given that F= 32 N
F = K Δ
K=Spring constant
Δ = 0.4 m
32 =0.4 K
K = 80 N/m
We know that ω²m = K
8 ω² = 80
ω = 3.16 s⁻¹
Given that V(max)= Aω = 4 m/s
3.16 A = 4
A= 1.26 m
Therefore the general equation of displacement
x = 1.26 sin 3.16 t