Answer:
7.09683 m
1.20285 s
2.4057 s
11.8 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² (negative up, positive down)
From equation of motion we have

The maximum height above the ground that the ball reaches is 7.09683 m

Time taken to go up is 1.20285 s it will take the same time to come down so total time taken to reach the ground after it is shot is 1.20285+1.20285 = 2.4057 s

The velocity just before it hits the ground is 11.8 m/s
Answer:
The speed of sound is affected by temperature and humidity. Because it is less dense, sound passes through hot air faster than it passes through cold air. ... The attenuation of sound in air is affected by the relative humidity. Dry air absorbs far more acoustical energy than does moist air.
Your gas mileage would be 22.93 miles per gallon.
Answer:
I= 20 i {N.s}
Explanation:
In order to obtain the impulse on the 2 kg ball, you have to apply the equation of Impulse:
I=FΔt
Where I is the impulse vector, F is the net force and Δt is the interval of time when the force is applied.
In this case:
Δt=0.01 s
F= 2000 i N
where i is the unit vector in the x direction.
Replacing the values in the formula:
I=(2000)(0.01)i
Therefore:
I= 20 i {N.s}