checlknthfd sissExplanation: 2+3 ls g g fg
Two resistor of 2Ω in series parallel to resistor 5Ω in series to a 2Ω resistor. This configuration gives to us an equivalent resistor of 2.55Ω.
To solve this problem we have to use the rules of conection of resistor in series and parallel.
A resistor R1 in serie with other resistor R2 gives us an equivalent resistor Req= R1 + R2.
A resistor R1 in parallel with other resistor R2 gives us an equivalent resistor Req = R1.R2/R1+R2.
The circuit that show an arregement of resistor which we obtain a equivalent resistor of 2.5Ω from three resistor of 2Ω and 5Ω respectively is attached in the image:
The length of the pendulum is 3.3 m.
The given parameters:
- Mass, m = 1.5 kg
- Angle, θ = 35⁰
- Speed, v = 3.4 m/s
<h3>What is principle of conservation of energy?</h3>
- The principle of conservation of energy states that, the total energy of a system is always conserved.
P.E = K.E
mgh = ¹/₂mv²
gh = ¹/₂v²
g(L - Lcosθ) = ¹/₂v²
gL(1 - cosθ) = ¹/₂v²

Thus, the length of the pendulum is 3.3 m.
Learn more about length of pendulum here: brainly.com/question/8168512
The impulse is (force) x (time) = (20 N) x (20 sec) = 400 N-sec
When we grind through the units, we find that the [newton-second]
is exactly the same as the [kilogram-meter/sec] unit-wise, and once
we know that, it doesn't surprise us to learn that impulse is equivalent
to a change in momentum (mass x speed ... also kg-m/s).
So this impulse exerted on the moving object adds 400 kg-m/s of
linear momentum to its motion, directed to the right. That may or
may not be the total change in its momentum during that 20-sec,
because our 20-N may not be the only force acting on it.
<u>Answer</u>
D) 3100 Liters
<u>Explanation</u>
To get the volume if the balloon you need to use the combined equation of the low of gases.
P₁V₁/T₁ = P₂V₂/T₂
(20×150)/(27+273) = (1×V₂)/(37+273)
3000/300 = V₂/310
10 = V₂/310
V₂ = 10 × 310
= 3100 Liters