I believe that the number of miles traveled would be 8. This is because you would subtract $5.00 from the $13.80 and then divided by $1.10.
D= diagonal= 25 in
w= 15 in
A= w√(d^2﹣w^2)
A= (15)√(25^2 - 15^2)
square in parentheses
A= (15)√(625 - 225)
subtract in parentheses
A= (15)√(400)
take square root of 400
A= (15)(20)
A= 300 in^2
ANSWER: The area is 300 inches squared
Hope this helps! :)
Check the picture below.

so the object hits the ground when h(x) = 0, hmmm how long did it take to hit the ground the first time anyway?

now, we know the 2nd time around it hit the ground, h(x) = 0, but it took less time, it took 0.5 or 1/2 second less, well, the first time it took 3/2, if we subtract 1/2 from it, we get 3/2 - 1/2 = 2/2 = 1, so it took only 1 second this time then, meaning x = 1.
![\bf ~~~~~~\textit{initial velocity in feet} \\\\ h(x) = -16x^2+v_ox+h_o \quad \begin{cases} v_o=\textit{initial velocity}&0\\ \qquad \textit{of the object}\\ h_o=\textit{initial height}&\\ \qquad \textit{of the object}\\ h=\textit{object's height}&0\\ \qquad \textit{at "t" seconds}\\ x=\textit{seconds}&1 \end{cases} \\\\\\ 0=-16(1)^2+0x+h_o\implies 0=-16+h_o\implies 16=h_o \\\\[-0.35em] ~\dotfill\\\\ ~\hfill h(x) = -16x^2+16~\hfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%20in%20feet%7D%20%5C%5C%5C%5C%20h%28x%29%20%3D%20-16x%5E2%2Bv_ox%2Bh_o%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Ctextit%7Binitial%20velocity%7D%260%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h_o%3D%5Ctextit%7Binitial%20height%7D%26%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h%3D%5Ctextit%7Bobject%27s%20height%7D%260%5C%5C%20%5Cqquad%20%5Ctextit%7Bat%20%22t%22%20seconds%7D%5C%5C%20x%3D%5Ctextit%7Bseconds%7D%261%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%200%3D-16%281%29%5E2%2B0x%2Bh_o%5Cimplies%200%3D-16%2Bh_o%5Cimplies%2016%3Dh_o%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20h%28x%29%20%3D%20-16x%5E2%2B16~%5Chfill)
quick info:
in case you're wondering what's that pesky -16x² doing there, is gravity's pull in ft/s².