A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.
Answer:
The power output of the first motor is, P = 2.0 x 10⁴ watts
Explanation:
Given data,
The height of the building, h = 10 m
The mass of the elevator, m = 1000 kg
The time duration of the motor to do this work, t = 5.0 s
The force acting on the elevator,
F = m x g
= 1000 x 9.8
= 9800 N
The work done by the elevator,
W = F x h
= 9800 x 10
= 98000 J
The power output of the first motor,
P = W / t
= 98000 / 5
= 19600 watts
= 1.96 x 10⁴ watts
Hence, the power output of the first motor is, P = 2.0 x 10⁴ watts
The force is -12,000 N
Explanation:
First of all, we calculate the acceleration of the ball, by using the following suvat equation:

where:
v = 0 is the final velocity of the baseball (it comes to rest)
u = 40 m/s is the initial velocity
a is the acceleration
s = 2.0 cm = 0.02 m is the displacement of the ball
Solving for a,

Now we can calculate the average force exerted on the ball, by using Newton's second law:

where
m = 300 g = 0.3 kg is the mass of the ball
is the acceleration
Substituting,

where the negative sign indicates that the direction of the force is opposite to the direction of motion of the ball.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly