Answer
given,
range of the projectile = 4.3 m
time of flight = T = 0.829 s


v = 5.19 m/s
vertical component of velocity of projectile
v_y = gt'



a) Launch angle


θ = 38°
b) initial speed of projectile


v = 6.59 m/s
c) maximum height reached by the projectile



Counter clockwise torque is 360Nm.
Clockwise torque is 240Nm.
40 * 9 = 360
80 * 3 = 240
<span>
A. The closet point in the Moon's orbit to Earth . . . . . perigee
B. The farthest point in the Moon's orbit to Earth . . . . . apogee
C. The Sun's orbit that is closest to the Moon . . . . . a meaningless description
D. The closest point in Earth's orbit of the Sun . . . . . perihelion
-- The farthest point in Earth's orbit of the Sun . . . . . aphelion
</span>
Answer: 36 meters.
Equation to find distance:
Speed x time
Answer: m∠P ≈ 46,42°
because using the law of sines in ΔPQR
=> sin 75°/ 4 = sin P/3
so ur friend is wrong due to confusion between edges
+) we have: sin 75°/4 = sin P/3
=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16
=> m∠P ≈ 46,42°
Explanation: