Considering that while traveling on a road with a<u> final speed of 15 m/s</u>, and an<u> initial speed of 24 m/s</u>, with a given time <u>of 12 seconds.</u>
To calculate the acceleration, we apply the following formula:
α = Vf - Vo/t
We add our data into the formula and solve:
α = 15 m/s - 24 m/s/12 sec
α = -0.75 m/s²
Therefore, the acceleration of the car is -0.75 m/s².
<h2>Skandar</h2>
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field. Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
Answer:
The fringes are 4.7*10^-7 m apart, such that they are adjacent.
Explanation:
Using the formula for adjacent fringes given a single slit:
Δ
Δ
Δ
Hope this helps!
Answer:
v=0.04m/s
Explanation:
To solve this problem we have to take into account the expression

where v and r are the magnitudes of the velocity and position vectors.
By calculating the magnitude of r and replacing w=0.02rad/s in the formula we have that

the maximum relative velocity is 0.04m/s
hope this helps!!
Here, we are required to determine which combination of molecules will produce ammonia with no leftovers.
Option A: 2N2 and 6H2 is the correct combination of molecules that will produce ammonia with no leftovers.
First, it is important to know that both Nitrogen and Hydrogen used in the production of ammonia are diatomic.
Secondly, Nitrogen and Hydrogen are in the ratio 1 : 3.....
As such, the coefficient of hydrogen should be thrice that of Nitrogen to ensure that there are no leftovers.
Therefore, option A which has:
2N2 and 6H2 is the correct combination of molecules that will produce ammonia with no leftovers.
Read more:
brainly.com/question/24396848