The parallel cross-sections of a cylinder, cone, sphere, and pyramid are a circle, a circle, a circle, and a square.
We are given some solids. Solid geometry, or stereometry, is the traditional name for the geometry of three-dimensional Euclidean spaces in mathematics. Stereometry is concerned with measuring the volumes of various solid figures. The given solids are a cylinder, cone, sphere, and pyramid. We need to find the parallel cross-sections of the given solids. Parallel cross sections are cross sections of a solid that are parallel to each other. A cross section is a straight slice of an object. The parallel cross-sections of a cylinder, cone, sphere, and pyramid are a circle, a circle, a circle, and a square.
To learn more about cross-sections, visit :
brainly.com/question/15541891
#SPJ9
Answer:
The answer is c or $180
Step-by-step explanation:
Answer:
m=0
Step-by-step explanation:
<em><u>mx²+2x-1=0</u></em>
if x=1/2 then
m(1/2)² +2(1/2)-1=0
m/4+1-1=0
m/4=0
m=0
Answer:
0.070
Step-by-step explanation:
Y = number on trial
Y has a negative binomial distribution
r = 3
P = 30% = 0.3 probability of positive indication.
P(Y = 11) probability of 11 employees that must be tested to get 3 positives
Y-1Cr-1*p^r*q^(y-r)
Y-1 = 11-1 = 10
r-1 = 3 -1 = 2
10C2 x 0.3³x0.7⁸
45x0.027x0.05764801
= 0.070
This is the probability that 11 employees must be tested to get 3 positives.