The answer is d as for any given length you could have any given volume by altering the cross sectional area of the pool and vice versa
Answer:
3= 25 4= 20 25= 5
Step-by-step explanation:
its a pattern. the top goes up by ones and the bottom goes up by fives.
Answer:
Step-by-step explanation:
a = 2, b = 1, c = -3
We need to factor this by finding the product of a and c, then from there find which factors of a * c will either add or subtract to give us b.
a * c = 6 and the factors of 6 and 1 and 6, 2 and 3. Well, 6 - 1 doesn't equal 1 and neither does 6 + 1. So our factors are 3 and 2. In order to combine those to get a 1 (our b), we will subtract 2 from 3 since 3 - 2 = 1. That means that 3 is positive and 2 is negative. Filling in the formula with 3 and 2 in place of 1 looks like this (always remember to put the absolute value of the largest number first):

Group the first 2 terms together and the second 2 term together in order to factor:
and factor out what's common in each set of parenthesis.

Notice that when we factor out a -1 from the second set of parenthesis, we can distribute it back in to get the equation we started with. We know that factoring by grouping "works" if what is inside both sets of parenthesis is exactly the same. Ours are identical: (2x + 3). That is common now, and can be factored out:

That matches your first choice
Answer:
a. see attached
b. H(t) = 12 -10cos(πt/10)
c. H(16) ≈ 8.91 m
Step-by-step explanation:
<h3>a.</h3>
The cosine function has its extreme (positive) value when its argument is 0, so we like to use that function for circular motion problems that have an extreme value at t=0. The midline of the function needs to be adjusted upward from 0 to a value that is 2 m more than the 10 m radius. The amplitude of the function will be the 10 m radius. The period of the function is 20 seconds, so the cosine function will be scaled so that one full period is completed at t=20. That is, the argument of the cosine will be 2π(t/20) = πt/10.
The function describing the height will be ...
H(t) = 12 -10cos(πt/10)
The graph of it is attached.
__
<h3>b. </h3>
See part a.
__
<h3>c.</h3>
The wheel will reach the top of its travel after 1/2 of its period, or t=10. Then 6 seconds later is t=16.
H(16) = 12 -10cos(π(16/10) = 12 -10cos(1.6π) ≈ 12 -10(0.309017) ≈ 8.90983
The height of the rider 6 seconds after passing the top will be about 8.91 m.