1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
15

Deshawn invests $5,000 in a savings account that earns 6% annual interest, compounded continuously. How long will it take to dou

ble his money?
Mathematics
1 answer:
koban [17]3 years ago
6 0

Answer:

Step-by-step explanation:

Investment = $5,000

Annual Interest = 5%

5000/100 x 5/1

50×5 = 250

First year interest = $250

Therefore, 250 x 20

= $5,000

It will take him 40 years.

You might be interested in
Wrote theses in scientific notation
Veseljchak [2.6K]

Answers:

I can't give you all the answers, because that would be cheating. How ever, I will give you the first 5 answers.

Move the decimal so there is one digit to the left of the decimal point. The places the decimal moved would be the exponent for 10.

  1. 3.456*10^2
  2. 8.89*10^-3
  3. 2.35*10^5
  4. 2.35*10^-2
  5. 3.015⋅0
7 0
3 years ago
Please Help me solve for x<br> 3x-m=10
Triss [41]

Answer:

x=(10+m)/3

Step-by-step explanation:

3x-m=10

3x=10+m

x=(10+m)/3

8 0
3 years ago
Read 2 more answers
PLS HELPPPP MEEEE I NEED WORK SHOWN TOO
Elanso [62]

The series of operations for each case are listed below:

  1. GCF / GCF / GCF
  2. GCF / Grouping
  3. Quadratic trinomial
  4. GCF / Quadratic trinomial
  5. Difference of squares
  6. Difference of cubes / Quadratic trinomial
  7. Sum of cubes
  8. GCF / Quadratic trinomial
  9. GCF / Difference of squares

<h3>How to applying factor properties to simplify algebraic expressions</h3>

In algebra, factor properties are commonly used to solve certain forms of polynomials in a quick and efficient way and whose effectiveness is sustained on all definitions and theorems known in real algebra. In this problem, we should explain and show what factor properties are used in each case:

Case 1

5 · x · y³ + 10 · x² · y                                             Given

5 · (x · y³ + 2 · x² · y)                                            GCF

5 · x · (y³ + 2 · x · y)                                              GCF

5 · x · y · (y² + 2 · x)                                              GCF

Case 2

6 · z · x + 9 · x + 14 · z + 21                                   Given

3 · x · (z + 3) + 7 · (z + 3)                                       GCF

(3 · x + 7) · (z + 3)                                                  Grouping

Case 3

a² + 2 · a - 63                                                       Given

(a + 9) · (a - 7)                                                       Quadratic trinomial

Case 4

6 · z² + 5 · z - 4                                                     Given

6 · [z² + (5 / 6) · z - 2 / 3]                                      GCF

6 · (z - 1 / 2) · (z + 4 / 3)                                         Quadratic trinomial

Case 5

81 · m² - 25                                                           Given

(9 · m + 5) · (9 · m - 5)                                           Difference of squares

Case 6

8 · x³ - 27                                                               Given

(2 · x - 3) · (4 · x² + 6 · x + 9)                                  Difference of cubes

4 · (2 · x - 3) · [x² + (3 / 2) · x + 9 / 4]                      Quadratic trinomial

Case 7

27 · b³ + 64 · z³                                                      Given

(3 · b + 4 · z) · (9 · b² - 12 · b · z + 16 · z²)               Sum of cubes

Case 8

2 · w³ - 28 · w² + 80 · w                                         Given

2 · w · (w² - 14 · w + 40)                                          GCF

2 · w · (w - 4) · (w - 10)                                             Quadratic trinomial

Case 9

200 · a⁴ - 18 · b⁶                                                     Given

2 · (100 · a⁴ - 9 · b⁶)                                                GCF

2 · (10 · a² + 3 · b³) · (10 · a² - 3 · b³)                       Difference of squares

To learn more on polynomials: brainly.com/question/17822016

#SPJ1

7 0
1 year ago
I need help with 3-4 quick
Agata [3.3K]
3-4 = -1

Hope this helps!

:)


6 0
3 years ago
Please help with my geometry homework!​
rusak2 [61]

Answer:

from that passage AB+BD=AD ; -4x+50+2x+4=2x+46 so -2x+54=2x+46 ; x=2.

AC=AB+BC ; AB=-4x+50=-4(2)+50=42

the total lengths is AD=2x+46=50

Therefore AC is more than 42 and less than 50 ; you can answer b,c,g

8 0
3 years ago
Other questions:
  • Which equation represents a direct linear variation?
    12·1 answer
  • Suppose you start at the origin, move along the x-axis a distance of 4 units in the positive direction, and then move downward a
    5·1 answer
  • Which best explains how the division equation relates to the diagram? 16 7/8 divided by 1 7/8
    5·1 answer
  • What are the next two numbers and what's the pattern?
    14·2 answers
  • Which one is it?<br>You can pick more than one.​
    10·1 answer
  • Find 36% of 4.58. <br> A)0.5122 B)1.6488 C)5.122
    5·2 answers
  • Divide 64 bundles of newspapers into two groups so the ratio is 3 to 5.
    5·1 answer
  • Find an equation for the nth term of the arithmetic sequence.
    10·1 answer
  • Hi i'm in the 5th grade almost 6th I struggle a lot with math and i have a lot of anxiety so sometimes i get stressed and i just
    10·2 answers
  • Determine the sum of the first 1000 Natural numbers
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!